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Human brain contains ~1011 (100 billion) neurons!
(with 100 trillion+ connections inbetween)

How	many	neurons	are	there	in	the	human	brain?	Synapses?

Starting	Point:	Quiz



“Grand	Challenge”

https://www.braininitiative.nih.gov/



Epstein & Kanwisher (1998)

Tools… (e.g.,	fMRI)



Tools… (e.g.,	structure)



http://web.stanford.edu/group/dlab/optogenetics/

Tools… (e.g.,	Optogenetics)



“Grand	Challenge” (re	the	brain)à Role	of	physicists?

(pedantic	aside)
Unlocking	the	potential	of	any	application	requires	a	deep	understanding…

Today’s	Goal
Focus	on	a	small	piece	of	this	pie	to	highlight	a	variety	of	key	biophysical	concepts/ideas

Diffusion

Micro	vs	Macro Electrodiffusion

Model	of	a	
neuronStochastics



Wikipedia	(nervous	system)

Neurons	are	key	base	
unit	of	nervous	system

Nervous	system



Weiss	(1996)

Neurons	(“fibers”)
=	Information	highway Key	Idea:	

Electrical	properties	of	cells	
are	important

1	– Basic	neuroscience	building	blocks

Neurons



Hodgkin	&	Huxley	(1939)

1	– Basic	neuroscience	building	blocks

Action	Potentials



à Neurons	send	info	via	electrical	pulses	(spikes)	occurring	across the	cell	membrane	

Stimulus

Response

Neuron

1	– Basic	neuroscience	building	blocks

Action	Potentials

Weiss	(1996)



“Neural	code”

1	– Basic	neuroscience	building	blocks

Aside
Is	our	central	nervous	
system	essentially	
“digitized”?

Action	Potentials



Kiang (1975)

Aside:	Neural	coding	of	hearing Illustrative	response	from	a	
single	auditory	nerve	fiber	
(top	trace;	acoustic	stim.	is	the	
bottom	trace)



zoom in on cell
membrane

inside cell

outside cell

Ø Membrane	primarily	consists	of	a	“lipid	bilayer”	
(to	separate	inside	from	outside)

Ø All	sorts	of	“stuff”	embedded	inside,	to	allow	
for	“communication”	across	membrane

1	– Basic	neuroscience	building	blocks

Cell	Membrane

Weiss	(1996)



Key	Idea:	Membrane	transport

Ø Cell	membranes	separate	inside and	outside

Ø Controls	what	solutes are	on	either	side	and	means	to	transport such

Ø Variety	of	transport	mechanisms:	carriers,	ion	channels,	pumps,	etc….

Weiss	(1996)



Andrew	Rutenberg
“Dear	Colleagues,
I’d	like	to	invite	you	all	(and/or	your	students)	to	the	‘Stochastic	Biology’	session”

C	Bergevin
“Isn't	all	biology	stochastic?”

Andrew	Rutenberg
“True,	I	was	hoping	to	keep	it	broad	but	sexy	for	people	who	don’t	know	better.”

Biology	is	messy….



Bialek (2012)



Key	Idea:	Stochastics



Ex. Patch	clamping	(re	single	ion	channels)

Hamill et	al.	(1981)

Historical	sidenote
This	work	contributed	
significantly	to	1991	
Nobel	Prize	to	E.	Neher
&	B.	Sakmann



à Single	ion	channel	current	appears	‘gated’	(i.e.,	on/off)

Ex. Patch	clamping	(re	single	ion	channels)

Weiss	(1996)



Figure	6.28

Ex. Patch	Clamping	(re	single	ion	channels)

à Single	ion	channel	current	appears	‘gated’	(i.e.,	on/off) and	noisy

Weiss	(1996)



Figure	6.50	(mod)

Ø Microscopic	model	(+	law	of	large	numbers)	
gives	rise	to	macroscopic	behavior

Key	Idea:	Statistical	mechanics	bridges	“micro”	&	“macro”

• Microscopic	=	stochastic

• Macroscopic	=	deterministic

Ø Useful	analogy:	discrete	versus	continuous	
(e.g.,	digital	versus	analog)

Weiss	(1996)



Is	this	“image”	a	bitmap	or	vector-based?

Teaching	Tangent:	Blurry	lines	between	discrete	&	continuous



Bitmap	version

Vector	version

zoom-in	about	corner	of	eye

Teaching	Tangent



Diffusion



Berg	(1993)

Diffusion



Key	Idea:	Diffusion	is	fundamental	process	at	play	here…



Ø According	to	wikipedia....

Question:	What	is	diffusion?
à Start	at	the	macroscopic level…



Ø According	to	the	dictionary....

Ø According	to	wikipedia....

Ø Some	historical	perspective….

Question:	What	is	diffusion?



“A few years ago, Graham published an extensive investigation on the diffusion of 
salts in water, in which he more especially compared the diffusibility of different 
salts. It appears to me a matter of regret, however, that in such an exceedingly valuable 
and extensive investigation, the development of a fundamental law, for the operation 
of diffusion in a single element of space, was neglected, and I have therefore 
endeavoured to supply this omission.”

- A. Fick (1855)

Diffusion (Macroscopic)

Weiss	(1996)

From	Graham’s	observations	(~1830):



Concentration - of	solute	in	solution [mol/m3]

Position [m],	Time [s]

Flux - net	#	of	moles	crossing	per	unit	time	t through	
a	unit	area	perpendicular	to	the	tx-axis [mol/m2·s]

Note: flux is a vector!

Note:	These	are	multi-variable	functions.	
Will	focus	on	1-D	case	here	for	simplicity

Diffusion (Macroscopic)



à “stuff”	moves	DOWN	a	concentration	gradient

Diffusion (Macroscopic)



constant	of	proportionality?

Ø Diffusion	constant	is	always	positive	(i.e.,	D >	0)
Ø Determines	time	it	takes	solute	to	diffuse	a	given	distance	in	a	medium
Ø Depends	upon	both	solute	and	medium	(solution)
Ø Stokes-Einstein	relation predicts	that	D is	inversely	proportional	to	solute	molecular	radius

Diffusion	constant (D)



Higher	Dimensions:

Analogous	Flux	Laws:

Diffusion	(Fick):

Convection	(Darcy): fluid	flow,	hydraulic	permeability,	
and	pressure

Heat	Flow	(Fourier): heat	flow,	thermal	conductivity,	
and	temperature

Electric	Conduction	(Ohm): current	density,	electrical	conductivity,
and	electric	potential

Diffusion:	Generalizations



Þ imagine a cube (with face area A and length Dx) and a time interval Dt

solute entering from left - solute exiting from right
(during time interval [t, t +Dt] )

= change in amount of solute inside cube
(during time interval [t, t +Dt] )

Continuity	Equation (1-D)

Weiss	(1996)



solute entering from left  - solute exiting from right
(during time interval [t, t +Dt] )

change in amount of solute inside cube
(during time interval [t, t +Dt] )

=

=

amount of solute entering
on left side of cube

amount of solute leaving
on right side of cube

amount of solute in cube at
the end of the interval

amount of solute in cube at
the start of the interval

Continuity	Equation (1-D)

Weiss	(1996)



Þ conservation of mass within the context of our imaginary cube yielded the continuity equation

Continuity	Equation (1-D)

Weiss	(1996)



2.	Continuity	Equation:

+

1.	Fick’s	First	Law:

(Fick’s	Second	Law)

Diffusion Equation

Weiss	(1996)



2. Steady-state: Flux can be non-zero, but flux and concentration are independent of time  

1. Equilibrium: Zero flux and concentration is independent of time

D ¹ 0 Þ concentration is independent of space and time

D = 0 Þ non-diffusible solute is automatically at equilibrium

Þ

[xo is a reference location where the 
concentration is known]

Þ

[integrate Fick’s 1st Law]

Freeman

Diffusion processes



3. Impulse Response: Point-source of particles (no mol/cm2) at t = 0 and x = 0
[Dirac delta function d(x)]

[Aside: solution can be found by a # of different methods, one being by separation of variables and using a Fourier transform]

Solution
(for t > 0)

need to solve:

given the inital/boundary conditions:

Batschelet Fig.12.5

Diffusion processes

Note:	Historically,	this	ties	in	
directly	w/	the	development	
of	“Fourier	analysis”



solution to
diffusion equation!

Diffusion processes



Weiss	Fig.3.14	(modified)

Diffusion processes



Freeman

Question: How long does it take (t1/2) for ~1/2 the solute 
to move at least the distance x1/2?

Gaussian function with zero mean and 
standard deviation: 

For small solutes 
(e.g. K+ at body temperature)

Importance	of	scale



Tangent:	Why	is	a	cell	“cell-sized”?

Ø Cells	are	typically	1-100	um	or	so	in	size.	Why?

Ø Non-trivial	question	and	likely	a	#	of	factors	(e.g.,	optimizing	volume	to	
surface	area),	but….

Ø … limits	stemming	from	
diffusion	are	likely	central



Membrane	Diffusion:	History	101

Freeman



Solute	“dissolves”	into	membrane	&	diffuses	across	
(and	then	dissolves	back	out)

Freeman

Membrane	Diffusion:	Dissolve	&	diffuse	model



Freeman

Membrane	Diffusion:	Partition	coefficient
Historic	sidenote
Measuring	the	PC	was	a	key	
approach	to	figuring	out	the	
chemical	composition	of	the	cell	
membrane	(i.e.,	phospholipids)



Freeman

Membrane	Diffusion:	Dissolve



Freeman

Membrane	Diffusion



Freeman

Key	Idea:	Membrane	Permeability

Membrane	permeability



Freeman

Membrane	Diffusion



Freeman

Membrane	Diffusion:	Summary



Diffusion

à Shift	back	to	the	microscopic level…



Berg	(1993)

Some	(remarkably	deep)	ideas	right	off	the	bat:

Ø Random	walkers

Ø Temperature,	Boltzmann’s	constant

Ø Einstein	and	1905

Ø Mean-squared	velocity,	“ensemble”

Ø “Brownian	movement”

Ø “Microscopic	theory” (ch.2	is	“Macroscopic	theory”)

à A	kernel	of	a	deep	idea	is	here,	the	distinction	
between	“lots	of	little	things”	versus	“big	things”
[statistical	mechanics	being	the	thread	tying	things	together]

Diffusion (Microscopic)



Ø One	of	Einstein’s	Annus
Mirabilis papers	from	
1905	(the	other	two	are	
on	special	relativity	and	
the	photoelectric	effect)	

Ø Solidified	the	foundations	of	statistical	
mechanics	and	characterized	the	
conditions	for	most	living	things	on	this	
planet	(i.e.,	cell-sized	entities)	

Annus mirabilis



Nelson	(2004)

Consider	that:
Ø the	drunkard	(randomly)	stumbles	about
Ø the	drunkard	may	have some	sense	of	where	(s)he	is	going

Random	walks



Random	(2-D)	walker	(i.e.,	no	bias)
Random	walks

Berg	(1993)



wikipedia (Brownian	motion)

Random	motion	of	large	object	(yellow	circle)	due	to	
interaction	with	many	little	objects	(black	circles)	

Brownian	Motion



Jean	Baptiste	Perrin	(1870-1942)

Aside:	A	bit	more	history	re	Brownian	motion



Teaching	Tangent: Brownian	motion	in	the	lab



Ø Brownian	motion	Þ ‘Random	Walker’ (1-D)

Diffusion (Microscopic)

Ensemble of	Random	Walkers



t = 0

t = 1

t = 5

t = 50

à On	average,	they	don’t	go	anywhere...	but	
they	do	“spread	out”	with	time

Diffusion: Microscopic



Ø Random	walking (in	1-D	for	simplicity)
• independent	of	one	another
• equal	probability	either	way

Mean	displacement:

Position	of	i’th walker	
after	n’th step:

à On	average,	they	don’t	go	anywhere(!)

Diffusion (Microscopic)

Berg	(1993)



Ø So	lots	of	“really	small	things”	can	push	
around	“small	things”

Ø ...	and	lots	of	“small	things”	can	“spread	out”

Two	sides	of	the	same	coin:	
micro- &macro-scopic,	which	
collectively	amount	to	“diffusion”

Key	Idea (REVISTED):	Stat.	mech.	bridges	“micro”	&	“macro”



Aside:	Mean-Squared	Distance (MSD)

Ø If	we	consider	an	‘ensemble’	of	random	walkers,	each	starting	at	the	origin	and	
independent	of	one	another,	computationally	it’s	easy	for	us	to	keep	track	of	the	
average	net	movement (Mean	Squared	Distance,	MSD)

<x2>	- Mean-squared	distance
D – ‘diffusion’	constant
t – time	allowed	before	‘checking’	<x2>

Giordano	(1997)

Ø So	while	each	individual	walker	is	random,	the	basic	idea	is	that	in	an	ensemble	
average,	a	repeatable/consistent	trend	emerges



% ### EXrandomWalk1D.m ###    11.15.14
clear;
% -------------
N= 200;      % Total # of (independent) walkers (each starts at x=0)
M= 100;      % Total # of steps for each walker
K= 3;       % # of walkers to show individual traces for [3]
bias= 0.5;      % number between [0,1] to indicate bias for left vs right (0.5= equal prob.)
% -------------
% +++
step_number= zeros(1,M);        %
x2ave= zeros(1,M);              % allocate array to stored (suquentially averaged) MSD
step_number_array= [1:1:M];     %
% +++
%
% NOTE: the loop is set up in such a way to average x2ave across walkers
for r= 1:N

x=0;    % initialize position for r'th walker
position(r,1)= 0;
% loop to go through M steps for r'th walker
for nn=1:M;

% conditional determines whether step is to the left or right
if (rand<bias),  x=x+1;
else x=x-1;  end;
x2ave(nn)=x2ave(nn)+x^2;    % store squared displacement (handles averging across r)
position(r,nn+1)= x;          % store displacment for each walker and step

end;
end;
x2ave= x2ave/N;     % Divide by number of walkers
% plot MSD
figure(1);
plot(step_number_array, x2ave, 'k'); hold on;
title('MSD for 1-D random walk');
xlabel('Step number'); ylabel('Mean-Squared Distance (x^2)');
% plot a subset of individual traces
figure(2); clf; hold on; grid on;
for nn=1:K

shade= 1-(nn-1)/K;
plot(position(nn,:),'Color',[1 1 1]-shade); 

end
xlabel('Step number'); ylabel('Position'); title('Representative traces');
plot([0 M],[1 1]*sqrt(x2ave(end)),'g--','LineWidth',2) % include MSD bounds at step M
plot([0 M],[-1 -1]*sqrt(x2ave(end)),'g--','LineWidth',2)
plot(M,sqrt(mean(position(:,end).^2)),'ro');    % reality check (another way to compute final MSD)
disp(['Final mean (non-squared) distance = ',num2str(mean(position(:,end)))]);

EXrandomWalk1D.m

§ Ensemble	of	N (independent)	walkers
§ Each	takes	M total	steps,	each	step	either	

left	or	right
§ Note	that	the	for loop	averages	as	it	goes			

Aside:	Mean-Squared	Distance (MSD)



EXrandomWalk1D.m

Representative	traces	from	three	different	
(independent)	walkers	
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Mean-squared	distance	traveled	by	a	large	
ensemble	of	walkers

Aside:	Mean-Squared	Distance (MSD)



% ### EXrandomWalk2D.m ###
% o Method 1 - simply equal probability one step up/down (U/D) and left/right (L/R)
% o Method 2 - U/D and L/R steps are sampled from a uniform distribution over [-1,1]
% o Method 3 - U/D and L/R steps are sampled from a Gaussian distribution
clear;
% -------------
N= 200;      % Total # of (independent) walkers (each starts at x=0)
M= 100;      % Total # of steps for each walker
K= 3;       % # of walkers to show individual traces for [3]
method= 3;  % see comments above
% -------------
% +++
step_number= zeros(1,M);        %
posAvg= zeros(1,M);              % allocate array to stored (suquentially averaged) MSD
step_number_array= [1:1:M];     %
% +++
for r= 1:N

x=0; y=0;   % initialize positions for r'th walker
positionX(r,1)= 0;  positionY(r,1)= 0;
% loop to go through M steps for r'th walker
for nn=1:M;

if method==1
if (rand<0.5),  x=x+1;  % conditional for left or right
else x=x-1;  end;
if (rand<0.5),  y=y+1;  % conditional for up or down
else y=y-1;  end;

elseif method==2
x= x+2*rand(1)-1;   y= y+2*rand(1)-1;

elseif method==3
x= x+randn(1);   y= y+randn(1);

end
posAvg(nn)= posAvg(nn)+ (x^2+y^2);    % store squared displacement (handles averging across r)
positionX(r,nn+1)= x;          % store displacments for each walker and step
positionY(r,nn+1)= y;

end;
end;
posAvg= posAvg/N;     % Divide by number of walkers
% plot MSD
figure(1);
plot(step_number_array,posAvg, 'k'); hold on;
title('MSD for 2-D random walk');
xlabel('Step number'); ylabel('Mean-Squared Distance (x^2+y^2)');
% plot a subset of individual traces
figure(2); clf; hold on; grid on;
for nn=1:K

shade= 1-(nn-1)/K;
plot(positionX(nn,:),positionY(nn,:),'Color',[1 1 1]-shade);

end
xlabel('x'); ylabel('y'); title('Representative traces');
% also plot MSD (which is a circular arc in this case)
rBND= sqrt(posAvg(end));  % radius MSD
xBND= linspace(-rBND,rBND,100); yBND= sqrt(rBND^2-xBND.^2);
plot(xBND,yBND,'r--','LineWidth',2); plot(xBND,-yBND,'r--','LineWidth',2);

EXrandomWalk2D.m

§ Same	basic	idea	as	1-D	code,	but	allows	for	
more	flexibility	



EXrandomWalk2D.m
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Aside:	Mean-Squared	Distance (MSD)



Metzler	&	Klafter (2000)

Quiz

What	is	different	between	these	
two	“random”	walkers?



Berg	(2000)

Note:	This	is	a	3-D	plot!	
(try	crossing	your	eyes)

Brownian	Motion??



Ø Passive:	movement	is	subject	to	the	
medium	you	are	in	moving	you	around	
(e.g.,	diffusion)

Ø Active:	you	move	yourself	around	
(e.g.,	swimming)

Key	Idea:	Passive	versus	Active



MacKintosh (PNAS	2012)

Answer:
How	“normal”	is	your	diffusion?

Question:	
So	how	can	we	tell	the	difference	
between	passive	and	active?

Anamolus Diffusion



Aside:	Reaction-Diffusion	(or	How	the	leopard	got	its	spots)

Ø Chiefly	just	described	diffusion	as	“flow”	thus	far…

Murray	(2003)

Ø But	addition	of	a	“reaction”	term	forms	a	key	approach	to	pattern	formation	
(this	stems	from	Alan	Turing’s	famous	1952	paper	The	Chemical	Basis	of	Morphogenesis)

Diffusion	equation

f(c) describes “reaction kinetics”

Reaction-Diffusion	equation



Aside:	Reaction-Diffusion	(or	How	the	leopard	got	its	spots)

Murray	(2003)



Ø Up	until	this	point,	we	have	considered	
our	walkers	to	not	be	interacting

à But	what	if	they	were	(electrically)	charged? Recall	from	earlier
(and	think	about	what	the	axes	are	here!)

Key	Idea:	Charged	random	walkers?



Graded	potentials	(note	RC	time	constant!)
Extracellular	solution	can	
have	a	big	effect

Electrical	properties	of	cells

Weiss	(1996)



Photoreceptors	(re	vision)

Hair	cells	
(re	hearing)

Weiss	(1996)

Aside:	Electrical	responses	in	sensory	systems

Similar	qualitative	behavior	for	
mechano- (touch) and	chemo-
receptors	(taste,	smell)



Nernst-Plank	Equation

Continuity

Poisson’s	Equation

Looking	Ahead:	Electrodiffusion Equations

à Now	we	can	
proceed	to	briefly	
derive	these	eqns.

Weiss	(1996)



- charge	#	(or	“valence	charge”)
(e.g.,	+1,	-1,	+2,	0,	etc...)	[re	1	e =	1.602	x	10-19 C]

- Faraday’s	constant	[9.65	x	104 C/mol]

- current	density	[A/cm2]

- electrical	potential	[V]

- permittivity	[F/m]

- mechanical	mobility	[s/kg]
from	Einstein	
relation

http://en.wikipedia.org/wiki/Permittivity

Electrodiffusion:	New	Variables Note:	We	will	assume	circuit	
theory	is	sufficient	by	ignoring	
electromagnetic	dynamics	
(e.g.,	no	relevant	magnetic	terms	or	
electromagnetic	radiation)



- mechanical	mobility	[s/kg]
from	Einstein	
relation

Ø Force	(fp)	required	to	move	a	sphere	of	radius	a through	a	
viscous	medium	of	viscosity	h with	a	velocity	of	n is

Stoke’s	Law
(eqn.3.22)

Ø Particle	mobility,	up ,	is	defined	as	the	ratio	of	the	particle	
velocity	to	the	force	on	the	particle

Ø Relating	to	the	diffusion	constant	(Annus Mirabilis):

Similar	to	
(reciprocal	of)	
impedance

Aside:	Mobility	&	Stokes-Einstein	Relation

Weiss	(1996)



diffusion electric	drift

current
density

à Essentially	a	charged	version	of	Fick’s	first	law,	but	now	with	an	
additional	term	due	to	electric	forces	(the	drift term	on	the	right)

Electrodiffusion:	Nernst-Plank	Equation

Weiss	(1996)



à Consider	a	charge	q placed	between	two	
uniformly/oppositely	charged	plates

q>0

- uniform	E field	between

- force	exerted	on	charge	(Coulomb’s	law)

- E depends	upon	spatial	gradient	of	the	
potential

Think	in	terms	of	energy	
(e.g.,	where	does	it	come	from?	conserved?)

Aside:	Electric	Drift



spatial	change	in	
current	density

temporal	change	in	
charge	density

à Just	like	our	derivation	for	regular	diffusion,	this	essentially	
tells	us	about	the	conservation	of	charge

Electrodiffusion:	Continuity	Equation

Weiss	(1996)



solute entering from left  - solute exiting from right
(during time interval [t, t +Dt] )

change in amount of solute inside cube
(during time interval [t, t +Dt] )

=

=

Weiss	(1996)

Aside:	Continuity	Equation (REVISTED)



Jn(x, t) = znF�n(x, t)

Relationship	between	current	
density	and	flux:

Aside:	Continuity	Equation (REVISTED)

Weiss	(1996)



charge	density	[C/m3]à Stemming	from	Gauss’Law,	relates	the	
charge	density	and	electric	potential

Aside:	Poisson’s	Equation

Weiss	(1996)





Electrodiffusion

Savtchenko et	al



Aside:	Reaction-Diffusion (REVISITED)

Ø Close	relationship	between	macroscopic	
descriptors,	the	notion	of	pattern	formation,	etc….

Reaction-Diffusion	equation

Electrodiffusion equation	(Nernst-Planck)

Fick’s	Law	&	Diffusion	equation

Jn(x, t) = znF�n(x, t)



à Simplifies	Poisson’s	equation	such	that	y is	a	
linear	function	across	the	membrane

Membrane	Electrodiffusion

Freeman



“We	also	endeavour to	dispel	some	common	misconceptions	regarding	the	nature	
of	the	membrane	potential	while	trying	not	to	dwell	too	much	on	the	well-
established	electrophysiological	postulates."

“…discuss	where	and	how	electroneutrality could	be	violated	and	what	
consequences	this	may	have	for	our	interpretation	of	empirical	observations“



Aside:	Assumptions	re	membrane	electrodiffusion

Ø Electrolytic	solutions à Fluids	inside	and	outside	cell	are	a	stew	of	
dissociated	ionic	species	(e.g.,	K+,	Na+,	Ca+,	etc…)

Ø Electroneutrality à Total	charge	per	unit	volume	is	zero

à Validity	of	these	assumptions	depends	upon	both	a	temporal	scale	
(charge	relaxation	time)	and	spatial	scale	(Debye	length)

Clearly	this	is	only	going	to	be	valid	
on	a	suitable	set	of	scales…



§ Charge Relaxation Time 

§ Debye Length

Measures	spatial	extent	of	electric	potential
(i.e.,	distance	over	which	electroneutrality is	violated)

Measures	temporal	change	in	charge	density
(i.e.,	relaxation	time	of	charge	distribution;	also	called	
the	Debye	time)

Aside:	Assumptions	re	membrane	electrodiffusion

Weiss	(1996)



Weiss	(1996)

Aside:	Debye	length



§ Charge Relaxation Time 

§ Debye Length

Measures	spatial	extent	of	electric	potential
(i.e.,	distance	over	which	electroneutrality is	violated)

Measures	temporal	change	in	charge	density
(i.e.,	relaxation	time	of	charge	distribution)

à Both	are	very	small	(1	ns	and	1	nm	respectively;	see	Weiss	v.1	
7.2.3),	justifying	that	ionic	solutions	obey	electroneutrality

Aside:	Assumptions	re	membrane	electrodiffusion

Freeman



(further)	Aside:	Deviations	from	the	ideal	model….

Savtchenko et	al



(further)	Aside:	Deviations	from	the	ideal	model….



à

Rearrange	Nernst-Plank	Equation

Integrate	across	membrane

Rearrange/Rename

Membrane	Electrodiffusion

Basically	Ohm’s	law!

Freeman



Key	Idea:	Membrane	modeled	as	an	electric	circuit

Freeman



Equivalent

Membrane	Electrodiffusion:	Different	charged	solutes	as	parallel	paths

Weiss	(1996)



Key	Idea:	Lipid	bilayer	acts	as	a	capacitor

Weiss	(1996)

http://en.wikipedia.org/wiki/Permittivity

Has	dielectric	properties	as	well…

Cell	membrane	separates	charge	
(and	thereby	can	act	like	a	pair	of	parallel	plates)



Hille (2001)

Aside:	Empirical	basis	for	membrane	as	an	RC	circuit



Ø Hair	cells	act	as	low-pass	filters	
(due	to	membrane	capacitance)

Hair	cells	(graded	potentials)	act	as	
front	end	to	auditory	neurons	(action	
potentials)

Transduction	is	nonlinear

Aside:	Auditory	hair	cells

Guinea	pig	
intracellular
IHC	responses

Palmer	&	
Russell	(1986)



Figure	6.19

Ø f,	i – Ionic	currents	(due	to	charge	“flow”	across	membrane)		

Ø a-e,	g,	h,	j – Capacitive	currents	(due	to	charge	“displacement”	or	redistribution	along/inside	membrane)		

Aside:	Two	basic	flavors	of	membrane	currents

Weiss	(1996)



Figure	6.4

Ø Component	(ig)	of the capacitive current

Ø Due	to	channel	(molecule	with	non-uniform	charge	distribution)	moving	
open/closed

Aside:	Gating	currents

Weiss	(1996)



Frishkopf &	DeRosier (1983)

bundle
mechanically
tuned

Crawford	&	Fettiplace (1981)

membrane
electrically
tuned

Aside:	Auditory	hair	cells	exhibit	mechanical	&	electrical	resonances



Fettiplace & Fuchs (1999)

§ Voltage-gated channels (e.g., 
calcium-activated “BK”
potassium channels) have 
intrinsic dynamics that can give 
rise to electric tuning

Aside:	Auditory	hair	cells	can	behave	like	RLC	circuits



Fettiplace & Fuchs (1999)

1. Mechanical motion deflects bundle, causing a 
transduction current to depolarize the cell

2. “Depolarization opens voltage-gated Ca2+

channels, promoting a rise in internal Ca2+ that 
activates BK channels”

3. “The large outward K+ current 
hyperpolarizes the membrane, closing the 
Ca2+ channels, which leads to the first 
cycle of the oscillation”

4. “As the cell hyperpolarizes and intracellular 
Ca2+ transients dissipate, the BK channels 
partially close, but due to the continued extrinsic 
current, the membrane swings positive to initiate 
another cycle of Ca2+ influx.”

“Since the BK channels are already partly activated, a smaller fraction of K+ current is recruited on the second cycle, which will have a 
smaller amplitude than the first. Because the K+ equilibrium potential (−80 mV) is negative to the resting potential (−50 mV), the BK 
channels behave as part of a negative feedback loop, but the time course of their activation delays the feedback and hence generates 
damped oscillatory responses. Such negative feedback also produces sharp tuning for sinusoidal stimuli, and the frequency at which 
the cell is maximally sensitive, the resonant frequency, should be influenced by the size and speed of the feedback.”

Aside:	Auditory	hair	cells	can	behave	like	RLC	circuits



Mechanical Electrical

Aside:	RLC	circuit	=	damped	harmonic	oscillator



F (force) ßà V (potential)
v (velocity) ßà I (current)
x (position) ßà q (charge)
m (mass) ßà L (inductance)
b (damping) ßà R (resistance)
k (spring) ßà 1/C (capacitance)  

Mechanical Electrical

state 
variables

Aside:	RLC	connection	back	to	harmonic	oscillator



‘Simple’ Version

‘Complete’ Version

à Note that DC (direct current) can be considered a special case of AC (alternating 
current). The ‘complete’ version of Ohm’s Law thus allows for more dynamical 
behavior to be accounted for in an efficient fashion when using Fourier or Laplace 
transforms (and reduces to the ‘simple’ case for uni-directional currents). 

Aside:	Complex	version	of	Ohm’s	Law



Mechanical
Impedance

Electrical
Impedance

à Admittance	(Y)	=	(Impedance)-1

à Conductance	(G)	=	(Resistance)-1

Aside:	Impedance	(mechanical	&	electrical)



Freeman

Key	Idea:	Membrane	permeability	as	a	(variable)	conductance	

à Electrodiffusion drives	movement	of	various	ionic	species	across	cell	membrane,	
but	permeability and	conductance are	two	sides	of	the	same	coin…



Key	Idea:	Nernst	potential

Freeman



c1 < c2

Assumption:	Single	permeable	ionic	species	(positively	charged)

à Note	that	the	creation	of	a	significantVn need	
not	require	significant	concentration	changes

Aside:	How	is	the	Nernst	potential	generated?

Weiss	(1996)



Figure	6.50	(mod)

Key	Idea (REVISITED):	Statistical	mechanics	bridges	“micro”	&	“macro”

Weiss	(1996)



Key	Point:	Electrical	properties	of	
cells	are	important

1	– Basic	neuroscience	building	blocks

Recall

Time

Voltage

Weiss	(1996)



Electrically	inexcitable cell Electrically	excitable	cell

Weiss	(1996)

Aside:	Graded	vs	action	potentials



Variable	Na+	and	K+	conductances

1	– Basic	neuroscience	building	blocks

Key	Idea:	Neuron	membrane	dynamically/selectively	“gates”

Alan	Hodgkin Andrew	Huxley

1963	Nobel	Prize

Weiss	(1996)



1	– Basic	neuroscience	building	blocks

Hodgkin-Huxley	Equations

Weiss	(1996)



1	– Basic	neuroscience	building	blocks

Weiss	(1996)



Weiss (1996)

1	– Basic	neuroscience	building	blocks

“In	the	history	of	the	biological	sciences,	there	exists	no	mathematical	model	that
has	been	welcomed	with	such	a	broad	consensus	as	the	Hodgkin-Huxley	model.”

https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/masterfaraci.pdf

HH	+	“Cable	Model”



Electrically	inexcitable cell Electrically	excitable	cell

Weiss	(1996)

Aside:	Spatial	conduction	à Propagation



Aside:	Hodgkin-Huxley	is	not	without	criticism…

Ø Simplifications	were	made	&	widely	employed (e.g.,	Fitzhugh-Nagumo,	
Morris-Lecar)

Ø Neurons	appears	to	have	more	than	just	one	kind	of	Na+ and	K+ channel	
(e.g.,	inward-rectifier	potassium	channels,	Ca2+ channels,	etc…)

Ø Even	the	“sodium	hypothesis”	(i.e.,	)	has	been	challenged,	much	like	the	
“potassium	hypothesis”	of	Julius	Bernstein

https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/masterfaraci.pdf

[Faraci et	al,	2013]	
“Despite	of	its	inconsistencies,	the	sodium	hypothesis	has	received	broad	acceptation	in	time	up	to	the	point	that	it	
constitutes	nowadays	one	of	the	basic	principles	of	our	understanding	of	how	neurons	function.	The	reason	why	
this	could	be	defended	by	the	vast	majority	of	the	scientific	community	in	face	of	the	experimental	evidence	is	at	
least	in	part	(if	not	mainly)	due	to	the	the	attractive	mathematical	formalism	used	by	Hodgkin	and	Huxley.”

“Given	that	the	Hodgkin-Huxley	model	has	been	ruled	out,	it	becomes	natural	to	wonder	which	could	be	then	an	
interpretation	of	action	potentials	consistent	with	experimental	evidence.“



Wikipedia

Chemical	Synapses



Wikipedia

Key	Idea:	Diffusion	is	a	fundamental	aspect	by	which	neurons	“communicate”

Chemical	synpases
“communicate”	via	diffusion	
of	neurotransmitter(s)

Recall:

Rough	calculation:
Diffusion	across	the	synaptic	
cleft	(~20	nm)	takes	~	1us
(i.e.,	diffusion	is	plenty	fast!)	



Recall:	Role	of	physicists?

https://www.braininitiative.nih.gov/



E.g.,:	Two-photon	microscopy





Aside (re	Light	& the	Brain)

Nov.	2017	“Special	Issue”	
of	Biophysical	Journal



Aside (re	Light	& the	Brain)



Aside (re	Light	& the	Brain)



http://web.stanford.edu/group/dlab/optogenetics/

Aside (re	Light	& the	Brain)



http://neurobyn.blogspot.ca/2011/01/controlling-brain-with-lasers.html

Aside (re	Light	& the	Brain)



Aside (re	Light	& the	Brain)



WebVision (Utah)

Aside (re	Light	& the	Brain)



Summary



Summary



Random	Walk	with	Drift	(Marius	Lehene)



Fini Slides	available	at:
http://www.yorku.ca/cberge/







EXwalker2D.m% ### EXwalker2D.m ###        07.15.15 CB
% Simulates a 2-D Brownian walker
% - polar coords. for computing a step
% - step size is unit value with normally distrib. val.
% - direction-wise, allows for either (via A.Pbias):
% o step direction is uniformally distributed over circle
% o Gaussian-like directional bias (kinda kludgy, but works)
% - [IN PROGRESS] allow for a (circular) boundary condition (via A.Pbound)
% that either reflects or is periodic

clear
% =======
walkerNum= 200;  % # of walkers to compute
steps= 500; % # of steps to take by walker
A0= 0.1;    % limiting stochastic factor (re 1) for unit step size (A0=0 --> unit radial steps, A0>0 introduce Gaussian variance)
% ---
A.Pbias= 0;       % boolean to create a directional bias
A.alpha= 0.2;     % bias factor [0,1] --> small (~0.1 means stronger bias)
A.offset= 0.75;    % offset direction for bias[cyc]
% ---
A.force1D= 0;       % boolean to force angle to be 0 or pi (thus making this 1-D)
% ---
A.Pbound= 1;       % boolean to create circular boundary (i.e., walkers constrained)
A.bndR= 20;         % radius of bounding wall (re origin)
A.boundType= 0;     % boundary condtion (req. A.Pbound=1): 0-"hard" (reflecting), 1-periodic
% ---
axLim= 25;  % bounds for plotting (Fig.66)
kk= 1;  % particle ID to visualize a single walker (Fig.66)
animate= 1;     % boolean to turn on/off movie for an individual walker (Fig.66)
numWplot= 5;    % # of walkers to plot individual (r^2) paths (Fig.4)
% =======

% ---
% if a constrained walk, force bounding condition (A.bndR) to be much
% larger than mean unit step size (helps avoid some coding headaches below)
if (A.Pbound==1 && A.bndR <= 5), disp('Make larger bounding condition'); end

for m= 1:walkerNum
% walker m initially at origin [i.e., cartesian (0,0)]
P(m).coord(1,:)= [0 0];

for nn=2:steps
% ----
P(m).A(nn)= 1+ A0*randn(1);     % (radial) size of nn'th step for m'th walker
if (P(m).A(nn)<0),   P(m).A(nn)=0;    end % make zero size step if negative (introduces bias?)
% ----
% direction of nn'th step for m'th walker (allows possibility of bias)
if A.Pbias==0

P(m).theta(nn)= rand(1)*2*pi;   % no bias
else

if (m==1 && nn==2), disp('Radial bias in effect');  end
P(m).theta(nn)= (A.offset + A.alpha.*randn(1))*2*pi;       % w/ radial bias

end



EXwalker2D.m
% ----

% constrain angle such that movement is essentially 1-D
if A.force1D==1

P(m).theta(nn)= round(P(m).theta(nn)/(2*pi))*pi;
end
% ----
% update re last position and store away in Cartesian and radial coords.
P(m).coord(nn,:)= [P(m).coord(nn-1,1)+P(m).A(nn)*cos(P(m).theta(nn)) P(m).coord(nn-1,2)+P(m).A(nn)*sin(P(m).theta(nn))];
P(m).rsq(nn)= P(m).coord(nn,1)^2 + P(m).coord(nn,2)^2;  % new radial position (squared)
P(m).phi(nn)= atan2(P(m).coord(nn,2),P(m).coord(nn,1));    % angle of new position re origin
% ----
% if constrained, check that new coords. aren't past wall (otherwise "reflect")
if A.Pbound==1

if (m==1 && nn==2 && A.boundType==0), disp('Circular hard/reflecting boundary in effect');  end
if (m==1 && nn==2 && A.boundType==0), disp('Circular periodic boundary in effect');  end
temp1= sqrt(P(m).rsq(nn));  % dummy to reduce re-computation
if temp1 >= A.bndR

if A.boundType==0
% ### HARD REFLECTION ###
% angle stays the same, only radius changes (and in a simple way)
temp2= 2*A.bndR- temp1;     % reflected radial length
%disp([temp1 P(m).A(nn) P(m).theta(nn) P(m).phi(nn) temp2]);  % for debugging

elseif A.boundType==1
% ### PERIODIC B.C. ###
% both radius changes and angle flips 180
temp2= 2*A.bndR- temp1;     % reflected radial length
P(m).phi(nn)= mod(P(m).phi(nn)+pi,2*pi);

end
P(m).rsq(nn)= temp2^2;      % squared version
% revised Cartesian version
P(m).coord(nn,1)= temp2*cos(P(m).phi(nn));
P(m).coord(nn,2)= temp2*sin(P(m).phi(nn));

end
end
% ----
% determine MSD
P(m).time(nn)= nn;  % "time" is simply the step number (can rescale as needed)
%P(m).MSD(nn)= sqrt(P(m).coord(nn,1)^2 + P(m).coord(nn,2)^2);  % radial position (not squared)
%P(m).MSD(nn)= P(m).coord(nn,1)^2 + P(m).coord(nn,2)^2;  % squared to get the "S" in MSD
P(m).MSD(nn)= P(m).rsq(nn);  % note that this is the radial position squared (hence "S" in MSD)

end
end

% --------
% compute mean MSD (across all walkers)  --> KLUDGE (better way to do this sans loops??)
for nn=1:steps

for m= 1:walkerNum
val(m)= P(m).MSD(nn);

end
meanMSD(nn)= mean(val);

end



% --------
% plot vals. for a (specified) individual walker
if 1==1

figure(1); clf;
subplot(211); plot(P(kk).coord(:,1),P(kk).coord(:,2),'k.-');
xlabel('x'); ylabel('y'); grid on; hold on; title('Walker position')
axis([-axLim axLim -axLim axLim])
% --- (plot a bounding circle)
if A.Pbound==1

th= 0:pi/50:2*pi; xunit= A.bndR*cos(th); yunit= A.bndR*sin(th); h66= plot(xunit, yunit,'r-');
end
% --- (plot MSD for an individual walker)
subplot(212); plot(P(kk).time,P(kk).MSD,'k-');
xlabel('Time'); ylabel('Radial displacement (squared)'); grid on; hold on;

end

% --------
% plot MSD for the ensemble
figure(2); clf;
plot(P(m).time,meanMSD,'k-');
xlabel('Time'); ylabel('MSD'); grid on; hold on;
% if constrained, visualize effective bounding limit
if (A.Pbound==1), h2B= stem(A.bndR^2,max(meanMSD),'r--','LineWidth',1);

legend(h2B,'Bounding radius (squared)','Location','SouthEast'); end

% --------
% plot distribution of angular values (polar histogram)
if 1==0

figure(3); clf;
% == (single walker) directions taken for each step for an individual walker
subplot(221); h3= rose(P(kk).theta,30);
set(h3,'LineWidth',1.5); x = get(h3,'Xdata'); y = get(h3,'Ydata'); g=patch(x,y,'y');
title('All steps for a single walker'); grid on; hold on;
% == (all walkers) directions taken for all steps of all walkers
subplot(223); h3= rose([P(:).theta],30);
set(h3,'LineWidth',1.5); x = get(h3,'Xdata'); y = get(h3,'Ydata'); g=patch(x,y,'y');
title('All steps for all walkers'); grid on; hold on;
% == (all walkers) final position for all walkers [KLUDGE: not sure how to do sans loop]
for mm=1:numel(P)   bank(mm)= P(mm).phi(end);   end
subplot(224); h3= rose(bank,floor(numel(P)/15));
set(h3,'LineWidth',1.5); x = get(h3,'Xdata'); y = get(h3,'Ydata'); g=patch(x,y,'y');
title('Final ang. position of all walkers'); grid on; hold on;

end

EXwalker2D.m



% --------
% plot time course (or r^2) for several walkers? (see also Fig.1B)
if 1==1

figure(4); clf;
for n=1:numWplot

hh= 0.8*n/numWplot;  % shading factor (to discern different traces)
plot(P(n).time,P(n).MSD,'-','Color',hh*[1 1 1]); grid on; hold on;

end
leg= plot(P(m).time,meanMSD,'r--','LineWidth',2);   % also plot ensemble MSD
xlabel('Time'); ylabel('Radial displacement (squared)'); 
title(['Bounding limit= ',num2str(A.bndR),'(squared= ',num2str(A.bndR^2),')']);
legend(leg,'ensemble MSD','Location','NorthWest');

end

% --------
% movie for an individual walker
if animate==1

figure(66); clf; axis([-axLim axLim -axLim axLim]); grid on; hold on;
for nn=2:steps

% --- (plot a bounding circle)
if A.Pbound==1

th= 0:pi/50:2*pi; xunit= A.bndR*cos(th); yunit= A.bndR*sin(th); h66= plot(xunit, yunit,'r-');
end
% --- (plot/update the track)
%plot(P(kk).coord(nn,1),P(kk).coord(nn,2),'ko-');
plot([P(kk).coord(nn-1,1) P(kk).coord(nn,1)],[P(kk).coord(nn-1,2) P(kk).coord(nn,2)],'k.-');
pause(0.04);  % {0.04}

end
end

EXwalker2D.m



EXwalker2D.m



EXwalker2D.m

Ø Introducing a bias.....


